The Making and Characterization of BaO- and $BaCl_2$ -Promoted Y_2O_3 Catalysts for the OCM Reaction

C. T. Au,¹ Y. W. Liu, and C. F. Ng

Department of Chemistry and Centre for Surface Analysis and Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Received March 4, 1997; revised June 26, 1997; accepted June 30, 1997

INTRODUCTION

The performances of the 30 mol% MO/Y_2O_3 (M = Mg, Ca, Sr, Ba) catalysts in OCM reactions have been investigated. The BaOpromoted one has out-performed the others. We found that the 30 mol% Ba X_2/Y_2O_3 (X = F, Cl, Br) catalysts could do even better. Both BaF2 and BaCl2 are good materials to promote Y2O3. At 800°C and with $CH_4: O_2: N_2 = 2.47: 1: 11.4$, total flow rate = 50 ml min⁻¹, contact time = 0.6 g s ml⁻¹, and weight of catalyst = 0.5 g, the C₂ yields over the catalysts were respectively 19.7 and 22.3%. In this paper, we concentrate on the BaCl₂/Y₂O₃ catalysts and compare them with the BaO/Y₂O₃ ones. It is obvious that the 30 mol% BaCl₂/Y₂O₃ catalyst is superior to the 30 mol% BaO/Y₂O₃ one both in C₂ selectivity and C₂H₄/C₂H₆ ratio. XRD examinations revealed that the addition of 10-50 mol% of BaO or BaCl₂ has greatly altered the surface and bulk natures of Y₂O₃. Crystal phase of orthorhombic BaCO3 was found to exist in the 30 mol% BaO/Y2O3 catalyst. Although no significant amount of any barium compound was detected over the fresh 30 mol% BaCl₂/Y₂O₃ catalyst, crystal phases of orthorhombic Ba₃Cl₄CO₃ and BaCO₃ were detected after OCM reactions. Also, the cubic Y2O3 lattices of the BaO- and BaCl₂-promoted catalysts were found to have undergone expansion which is a result of ionic substitution(s). The reactivity of the 30 mol% BaCl₂/Y₂O₃ catalyst has been monitored for 40 h at 750°C and found to be stable. Although XPS results suggested no significant change in surface chlorine concentration, analysis of Cl content of the catalyst revealed that up to ca 15.5% of the original content of chlorine was lost after 20 h of reaction. Y₂O₃ by itself lacks active oxygen for the oxidation reaction. O₂ TPD and reduction studies of the fresh 30 mol% BaO- and BaCl2-promoted catalysts showed that the amount of active oxygen in the former was at least 4 times that in the latter. However, during OCM reaction, the 30 mol% BaCl₂/Y₂O₃ catalyst was changing somewhat like a 30 mol% BaO/Y₂O₃ catalyst. It is apparent that the presence of Cl⁻ ions in the 30 mol% BaCl₂/Y₂O₃ catalyst is the reason for the superiority in C₂ selectivity over the BaCl₂-promoted Y₂O₃ catalysts. We conclude that the presence of Ba^{2+} ions can enhance the amount of oxidative oxygen for CH₄ activation while the presence of Cl⁻ suppresses deep oxidation. A careful balance of the two can optimize the performance of the Y-Ba-Cl catalysts in the OCM reaction. © 1997 Academic Press

The utilization of natural gas, especially through the conversion of methane to useful chemicals such as ethene and methanol, has been widely studied. As far as the oxidative coupling of methane (OCM) reaction is concerned. a large number of compounds have been tried as catalysts. Among the materials studied, alkaline earth oxides or carbonates and rare earth oxides have been found to be active (1–8). Clear trends of augmentation in catalytic performance have been observed with the increase in basicity of the alkaline earth oxides: MgO < CaO < SrO < BaO (1, 7, 9, 10). It is obvious that the strongly basic SrO and BaO can give better C2 selectivities (3, 5, 7). Korf et al. have showed a synergistic effect between Ca and Ba oxides. They suggested that the active oxygen species in the case of Ba/CaO is an O_2^{2-} species (5). The use of rare earth oxides as catalysts has been studied extensively (7, 11–18). At 700°C and with contact time = 0.002 g s ml⁻¹ and $CH_4: O_2 = 45.5: 1$, the performance over the rare earth oxides was found to increase in the order of CeO_2 , TbO_x , $PrO_x < Lu_2O_3$, Dy_2O_3 , Eu_2O_3 , Nd_2O_3 , La_2O_3 , Y_2O_3 , Yb_2O_3 , $Tm_2O_3 < Er_2O_3$, $Gd_2O_3 < Ho_2O_3 < Sm_2O_3$ (11a). Results of later research also suggested that rare earth oxides such as Sm₂O₃ (7, 11e), Eu₂O₃ (7), Ho₂O₃ (7), Gd₂O₃ (18), La₂O₃ (7, 15-18), and Y_2O_3 (17) are good materials for producing good-performance OCM catalysts.

Composite metal oxides containing rare earth have been thought to be good catalysts for the OCM reaction. Alkaline earth oxides have been found to be good promoting materials for rare earth oxides (17, 18, 20–25). For example, Deboy *et al.* found that while there was little change in CH₄ conversion (ca 20%), the C₂ selectivities over 1% Sr/La₂O₃ and 1% Ba/La₂O₃ were 65.4 and 68.1%, respectively, significantly higher than the value of 59.0% over La₂O₃ (21). Other composite catalysts such as Ca/ThO₂, Sr/ThO₂, Ba/ThO₂ (20) and CaY₂, SrY₂, BaY₂, SrTh₂, SrLa₂ (17) have been reported to be active for the OCM reaction. Osada *et al.* (26) have studied the binary oxides of Y₂O₃–CaO for the OCM reaction. They found that C₂₊ selectivity at 700°C was affected by a lattice distortion of Y₂O₃ and increased

 $^{^{1}\,\}text{To}$ whom correspondence should be addressed. E-mail: pctau@hkbu.edu.hk.

with the increasing content of Y_2O_3 in the coprecipitated catalyst. Kaminsky *et al.* (27) have studied the Ba-doped yttria oxidative coupling catalyst and proposed that the active site were charge-deficient oxygen sites created as Ba^{2+} substitutes into Y^{3+} lattice sites. More recently, the dissolution of Sr^{2+} into Y_2O_3 has been suggested by Erarslanoglu *et al.* to be the reason for the higher performance of the Sr/Y_2O_3 (1:10 molar ratio) catalyst as compared to the undoped Y_2O_3 (28).

The effects of halides on the catalytic performance of MgO and CaO have been demonstrated by Fujimoto et al. (29). Both Cl⁻ and Br⁻ ions were reported to have positive effects. Burch et al. (30, 31) carried out a series of studies on the effect of chlorine over various catalysts. They found that the pulse injection of gaseous chlorinated compounds over MnO₂-based catalysts, lithium-doped MgO, and Sm₂O₃ catalysts markedly increased the C₂ selectivity. Moffat and coworkers (32, 33) found that the addition of a small amount of tetrachloromethane to the reactant stream could improve the catalytic activity of La₂O₃, Pr₆O₁₁, and Sm₂O₃. They attributed the improvement to oxychloride formation. In recent years, a number of La-Ba-X(X = F, Cl, Br) catalysts have been studied in our laboratory. Catalysts such as LaF₃/La₂O₃ (34), BaBr₂/La₂O₃ (35), BaCO₃/LaOBr (36), BaCO₃/LaOCl (37), and BaCO₃/LaOF (38) were found to perform well. In this paper, we illustrate how Y₂O₃ was promoted by alkaline earth cations and halide anions. We also report how we came to and consequently characterized the $30 \text{ mol}\% \text{ BaCl}_2/\text{Y}_2\text{O}_3$ catalyst using techniques such as GC, XRD, XPS, O₂, and CO₂ TPD, ¹⁸O/¹⁶O isotope exchange, and TPR.

EXPERIMENTS

The MO/Y_2O_3 (M=Mg, Ca, Sr, Ba) and BaX_2/Y_2O_3 (X=Cl, Br) catalysts were prepared by impregnating (with constant heating and stirring to dryness) commercial Y_2O_3 (Shanghai Chemicals, purity >99.99%) respectively with a solution of $M(NO_3)_2$ (MERCK, purity >99%) and BaX_2 . The BaF_2/Y_2O_3 catalysts were prepared by grinding the right amounts of BaF_2 (Beijing Chemicals, purity >98.6%) with Y_2O_3 . These catalysts were calcined in air at 800°C for 5 h before being ground, tableted, crushed, and sieved into 40–80 mesh.

The reactions were carried out with 0.5 g of the catalyst in a fix-bed quartz flow microreactor (i.d. = 4 mm) at atmospheric pressure (36). A thermocouple was used to measure the reaction temperatures which were ranging from 600 to 800°C at 50° intervals. Methane (Hong Kong Oxygen Company, purity 99.5%), air, and nitrogen were passed through the microreactor. The flow-rate of each gas was controlled by a mass flow controller and was 8.3 ml min⁻¹ for methane, 16 ml min⁻¹ for air, and 25.7 ml min⁻¹ for nitrogen; giving a contact time of 0.6 g s ml⁻¹. The exit flow rate was 50 ml min⁻¹ as indicated by a flowmeter. The product distribution was determined by a Shimadzu 8A TCD gas chromatograph with Porapak Q and 5A molecular sieve columns. The measurement for catalytic activity was taken after an on-stream time of 1 h at a particular reaction temperature. The reaction products were H₂O, CO, CO₂, C₂H₆, and C₂H₄. As hydrogen was used as the carrier gas, H₂ was not detectable as a product. The activity of a catalyst was expressed by means of methane conversion and C₂ hydrocarbon selectivity with accuracy estimated to be within 5%. The calculation of methane conversion and selectivity for C₂ were based on total carbon balance. A carbon balance of 100 \pm 2% was obtained for every run over the catalysts. The conversion of methane or oxygen was defined as

$$c(CH_4 \text{ or } O_2) = \frac{\text{moles } CH_4 \text{ or } O_2 \text{ converted}}{\text{moles } CH_4 \text{ or } O_2 \text{ fed}} \times 100\%$$

The selectivity for C₂ products was calculated as

$$s(C_2) = \frac{2 \times \text{moles } (C_2H_4 + C_2H_6) \text{ in products}}{\text{moles } CH_4 \text{ converted to all products}} \times 100\%$$

The yield for C₂ product was given by

$$y(C_2) = c(CH_4) \times s(C_2).$$

The specific surface area of the catalysts was measured by the BET method. The continuous flow chromatographic technique was adopted with helium as the carrier gas and nitrogen as the adsorbate. The method was based on the amount of nitrogen adsorbed at low temperature (-196° C) and desorbed at higher temperature. The specific surface areas of the catalysts were calculated according to the BET equation.

The phase composition of catalysts before and after OCM reaction was determined by an X-ray diffractometer (D-MAX, Rigaku) with Cu K α radiation ($\lambda = 1.542$ Å). The pattern obtained was referred to the powder diffraction file—PDF-2 Database for the identification of crystal structures. X-ray photoelectron spectroscopy (XPS, Leybold Heraeus-Shengyang SKL-12) was performed to characterize the catalyst surface, using Mg K α as the X-ray source. The binding energies were calibrated to the C*Is* value of contaminant carbon (284.6 eV). Surface compositions were calculated using the equation

$$\mathbf{X}_i = (\mathbf{A}_i / \mathbf{S}_i) \times \mathbf{100} / \sum (\mathbf{A}_i / \mathbf{S}_i),$$

where A_i is peak area of XPS signal of element *i* and S_i is the corresponding atomic sensitivity factor.

For the O_2 and CO_2 TPD studies, 0.2 g of the sample was placed in the middle of a quartz microreactor with 4-mm inner diameter. Silica was located at the bottom of the catalyst bed to reduce the residual space. The gases, after passing through the microreactor, were analyzed online by mass spectrometry (HP G1800A). The heating rate was 15°C min⁻¹ and the temperature range was from room temperature to 800°C. Before performing the O₂ TPD experiments, the sample was first calcined *in situ* at 800°C for 1 h under an oxygen flow of 15 ml min⁻¹, followed by cooling in oxygen to room temperature and helium purging (flow rate = 20 ml min⁻¹) for 30 min. In the CO₂ TPD experiments, the catalysts were first treated exactly as the O₂ TPD experiments before exposure to a flow of CO₂ gas (20 ml min⁻¹) for 10 min at room temperature followed by helium purging for 20 min.

For the analysis of chlorine content, the catalyst was first digested in 0.1 MNaOH solution. The resulting solution was neutralized by 2 MHNO₃ solution and titrated against standardized AgNO₃ solution using 0.005 M potassium chromate as indicator (39).

The exchange between gas phase ¹⁸O₂ and surface ¹⁶O was studied in the temperature range of 100 to 800°C, using a pulse reaction system with a pulse size of 1.12 μ mol. Catalyst (ca 0.2 g) was placed in a tubular quartz flow reactor (i.d. 4 mm) and was treated with pure O₂ and N₂ (0.5 h each; flow rate = 50 ml min⁻¹) at 800°C; ¹⁸O₂ was then pulsed over the catalyst at the desired temperature. The effluent from the reactor was directed to a GC-MS (HP G1800A GCD) system for analysis.

Temperature-programmed reduction (TPR) was conducted by using a 7% H_2 -93% N_2 (v/v) mixture. The flow rate of the carrier gas was 50 ml min⁻¹ and a thermal conductivity detector was used; 0.2 g of sample was used and the heating rate was 10°C min⁻¹.

The reducible oxygen studies were also performed on the MS (HP G1800A) system. The pulse size of O_2 was 65.7 μ L (at 25°C, 1 atm). The catalyst (0.2 g) was placed in a quartz reactor and was first reduced in H₂ at the desired temperature for 1 h, followed by O_2 -pulsing at 800°C. We kept on pulsing O_2 over the reduced sample until after passing the catalyst, there was no observable decrease in O_2 -pulse size. The total amount of O_2 absorbed by the catalyst was then estimated and expressed in mole per gram of catalyst.

RESULTS

Catalytic Performance of Y_2O_3 and MO (M = Mg, Ca, Sr, Ba)-Promoted Y_2O_3 Catalysts

Table 1 shows the catalytic activities of the 30 mol% MO/Y_2O_3 catalysts. It is clear that the addition of 30 mol% of CaO, SrO, and BaO to Y_2O_3 has significantly enhanced the conversion of CH₄ and the selectivity to C₂. As a result, compared to Y_2O_3 , the C₂ yield of the promoted Y_2O_3 catalysts was nearly double. One can also see enhancement in the rate of CH₄ reaction. Comparing the four 30 mol% MO/Y_2O_3 catalysts, the SrO- and BaO-promoted ones performed better than the CaO- and MgO-

promoted catalysts. The performance of the catalysts goes along the series: $Y_2O_3 \approx 30 \text{ mol}\% \text{ MgO}/Y_2O_3 < 30 \text{ mol}\%$ $CaO/Y_2O_3 < 30 \text{ mol}\% \text{ SrO}/Y_2O_3 \approx 30 \text{ mol}\% \text{ BaO}/Y_2O_3$. The 30 mol% BaO/Y_2O_3 catalyst is slightly superior to the 30 mol% SrO/Y_2O_3 one, as the former performed better at lower temperatures (650 and 700°C). For the pure BaO, the C₂ yield was poor below 750°C, but at 800°C its performance was matching that of the 30 mol% BaO/Y_2O_3 catalyst. Since the 30 mol% BaO/Y_2O_3 catalyst was the best among the *M*O-promoted Y_2O_3 catalysts, we chose to modify the Y–Ba catalyst with halogens with the hope to achieve even better performance.

Catalytic Performance of BaX_2 (X = F, Cl, Br)-Promoted Y_2O_3 Catalysts

First we investigated the effects of halide ions. BaF_{2} , BaCl₂, and BaBr₂ were used instead of BaO for the modification of Y_2O_3 . From Table 2, one can see that all the Ba X_2 promoted catalysts are good-performance catalysts. At 750 and 800°C, C₂ yields of ca 20–22.5% were achieved over the 30 mol% BaF₂/Y₂O₃ and 30 mol% BaCl₂/Y₂O₃ catalysts, with the latter being slightly superior to the former. Over the 30 mol% $BaBr_2/Y_2O_3$ catalyst, the C_2 yield was 18.6% at 750°C. Figure 1 gives a comparison of the Y_2O_3 , 30 mol% BaO/Y₂O₃, and 30 mol% BaX₂/Y₂O₃ catalysts. Compared to a 30 mol% BaO/Y2O3 catalyst, the BaX2promoted Y₂O₃ catalysts can give better C₂ selectivities (improved from ca 40 to 50%) above 700°C. There were slight decreases in CH₄ conversions over the BaF₂- and BaBr₂promoted Y₂O₃ catalysts. Over the 30 mol% BaCl₂/Y₂O₃ catalyst, however, CH₄ conversion was slightly higher than the 30 mol% BaO/ Y_2O_3 catalyst. As far as the C_2 yield is concerned, all the Ba X_2 -promoted catalysts performed better than the BaO-promoted one at 750 and 800°C. For pure BaCl₂, the C₂ yield was poor below 750 $^{\circ}$ C. At 800 $^{\circ}$ C, it was 14.6%.

Effects of BaCl₂ and BaO Loadings on the BaO/Y₂O₃ and BaCl₂/Y₂O₃ Catalysts

Figure 2 shows that as the loadings of BaO increased from 0 to 50 mol% in the BaO/Y₂O₃ catalysts, the conversion of methane increased from ca 30 to 47% at OCM reaction temperatures of 750 and 800°C. Over the BaCl₂/Y₂O₃ catalysts, methane conversion increased rather similarly from 0 to 30 mol% BaCl₂ loadings. Between 40 and 50 mol%, there was a drop (ca 4%) in methane conversion. One can see that with the addition of BaCl₂ to Y₂O₃, C₂ selectivity was greatly enhanced (from ca 26 to 55%). For the BaO-promoted catalysts, C₂ selectivity was ranging from ca 22 to 50%. The BaCl₂/Y₂O₃ catalysts in C₂ selectivity between the range of 0 to 40 mol% loadings. At 50 mol%, the C₂ selectivities over the two catalysts were rather close. Actually, at 50 mol% loadings, the BaO/Y₂O₃ catalyst performed better

TABLE 1

		5		2 0		0,			2 0 9
	<i>T</i> (°C)	Co	Conversion (%)		Selectivity (%)		C: vield	Rate of CH4 reaction	
Catalyst		CH ₄	O_2	CO _x	C_2H_4	C_2H_6	C ₂	(%)	$(10^{17} \text{ molecules m}^{-2} \text{ s}^{-1})$
Y ₂ O ₃	600	25.0	89.0	88.5	4.80	6.70	11.5	3.00	0.46
	650	25.9	89.5	84.7	7.90	7.40	15.3	4.00	0.46
	700	26.8	91.5	79.1	13.3	7.60	20.9	5.60	0.47
	750	30.3	92.8	73.8	18.0	8.20	26.2	7.80	0.53
	800	31.8	92.0	73.1	16.3	8.60	26.9	8.60	0.56
MgO/Y_2O_3	600	23.0	82.0	84.6	7.70	7.70	15.4	3.50	0.40
	650	24.1	88.0	76.4	14.2	9.40	23.6	5.70	0.42
	700	26.6	87.5	70.6	18.9	10.5	29.4	7.80	0.46
	750	27.2	90.0	70.0	20.0	10.0	30.0	8.10	0.48
	800	24.8	88.0	75.2	17.7	7.10	24.8	6.20	0.43
CaO/Y_2O_3	600	34.1	87.2	71.9	13.8	15.3	28.1	9.60	0.75
	650	38.9	91.0	64.0	21.0	15.0	36.0	14.0	0.86
	700	37.4	90.0	59.3	23.7	17.0	40.7	15.2	0.82
	750	38.9	97.6	63.9	22.2	13.9	36.1	14.0	0.86
	800	36.7	98.0	70.9	20.8	8.30	29.1	10.7	0.81
SrO/Y ₂ O ₃	600	28.1	75.0	81.3	7.00	12.7	18.7	5.30	0.93
	650	36.0	93.0	66.7	18.2	15.1	33.3	12.0	1.20
	700	38.5	96.0	56.9	27.1	16.0	43.1	16.6	1.30
	750	38.6	96.1	56.7	28.4	14.9	43.3	16.7	1.30
	800	36.6	97.0	62.4	28.2	9.40	37.6	13.8	1.20
BaO/Y_2O_3	650	42.3	90.0	60.0	23.4	16.6	40.0	16.8	1.40
	700	43.2	96.2	60.6	21.5	17.9	39.4	17.0	1.43
	750	39.7	97.5	60.5	23.0	16.5	39.5	15.7	1.31
	800	39.1	97.7	68.7	20.1	11.2	31.3	12.2	1.29
Pure BaO	650	1.00	4.00	100	0.00	0.00	0.00	0.00	0.01
	700	3.00	19.2	58.8	0.00	41.2	41.2	0.00	0.31
	750	10.1	28.1	37.3	22.2	40.5	62.7	6.30	1.05
	800	21.2	69.0	40.8	32.9	26.3	59.2	12.6	2.21

The Catalytic Performance of Y₂O₃ and MO (M=Mg, Ca, Sr, Ba)-Promoted Y₂O₃ Catalysts

Note. The loading of MO on Y_2O_3 was 30 mol%. $CH_4: O_2: N_2$, 2.47:1:11.4. The total flow rate was 50 ml min⁻¹. Contact time, 0.6 g s ml⁻¹. The weight of catalyst was 0.5 g.

than the BaCl₂/Y₂O₃ catalyst. C₂ yields of ca 24% were achieved at 750 and 800°C. Over the 50 mol% BaCl₂/Y₂O₃, they were ca 17 and 21% respectively at 750 and 800°C. The C₂ yield obtained over the 40 mol% BaO/Y₂O₃ and the 40 mol% BaCl₂/Y₂O₃ catalysts were rather similar, around 21%. Below 40 mol%, the BaCl₂/Y₂O₃ catalysts definitely out-performed the BaO/Y₂O₃ catalysts.

BET, XRD, and XPS Studies

Figure 3 reveals that the specific surface areas of the BaCl₂/Y₂O₃ catalysts decreased as the BaCl₂ loadings increased. Between 0 and 30 mol% BaCl₂ loadings, the specific surface areas of the fresh BaCl₂/Y₂O₃ catalysts decreased from ca 10.4 to 5.6 m² g⁻¹. There was another decrease of ca 1.0 m² g⁻¹ from 20 to 50 mol%. For the catalysts used in OCM reactions at 800°C, the specific surface areas became even smaller. The value for the used Y₂O₃ catalyst was ca 7.0 m² g⁻¹. For the used 40 and 50 mol% BaCl₂/Y₂O₃ catalysts, the specific surface areas were ca 1.3 m² g⁻¹. Similarly, a fresh 30 mol% BaO/Y₂O₃ catalyst has a specific

surface area of ca $6.0 \text{ m}^2 \text{ g}^{-1}$ before OCM reaction. After OCM reaction at 800° C, it was ca $3.9 \text{ m}^2 \text{ g}^{-1}$. Hence, with the increase in BaO or BaCl₂ loadings on Y₂O₃, there was reduction in specific surface area. In general, the specific surface areas of the catalysts reduced further during OCM reactions.

XRD investigations revealed that for the fresh 30 mol% BaO/Y₂O₃ catalyst, there were weak signals of orthorhombic BaO and BaCO₃ along with the cubic Y₂O₃ signals. For the fresh 30 mol% BaCl₂/Y₂O₃ catalyst, only Y₂O₃ signals were detected. However, after OCM reaction, weak signals due to orthorhombic Ba₃Cl₄CO₃ and BaCO₃ were observed. Based on detailed XRD investigations, we know that the size of the Y₂O₃ lattice increased as the BaO and BaCl₂ loadings of the BaO/Y₂O₃ and BaCl₂/Y₂O₃ catalysts increased (Fig. 4). The crystal structure of Y₂O₃ is of the fluoride type (40). The length (*a*₀) of the unit cell edge is 10.604 Å. For the fresh BaO/Y₂O₃ catalysts, *a*₀ increased only slightly with the increase of BaO loadings from 0 to 40 mol%. At 50 mol%, *a*₀ was 10.613 Å. After the OCM

	Т (°С) 650	Conversion (%)		Selectivity (%)		Co viold	Rate of CH, reaction		
Catalyst		CH ₄	O_2	CO _x	C_2H_4	C_2H_6	C ₂	(%)	$(10^{17} \text{ molecules m}^{-2} \text{ s}^{-1})$
BaF ₂ /Y ₂ O ₃		12.9	64.4	79.1	6.30	14.6	20.9	2.70	0.98
	700	30.6	80.1	62.1	20.4	17.5	37.9	11.6	2.33
	750	38.2	91.4	53.4	29.9	16.7	46.6	17.8	2.91
	800	39.0	93.3	49.6	33.3	17.1	50.4	19.7	2.97
BaCl ₂ /Y ₂ O ₃	650	19.8	33.9	67.9	13.3	18.8	32.1	6.30	0.59
	700	32.3	67.3	55.6	25.6	18.8	44.4	14.3	0.97
	750	40.6	86.5	49.7	36.7	13.6	50.3	20.5	1.22
	800	43.2	92.9	48.3	39.7	12.0	51.7	22.3	1.31
BaBr ₂ /Y ₂ O ₃	650	31.0	82.1	63.9	25.8	10.3	36.1	11.2	0.71
	700	36.7	93.1	54.9	36.5	8.60	45.1	16.5	0.84
	750	38.2	94.1	51.4	41.3	7.30	48.6	18.6	0.87
	800	35.7	94.3	52.7	37.2	10.1	47.3	16.9	0.82
Pure BaCl ₂	650	0.74	3.00	30.2	0.00	69.8	69.8	0.52	0.03
	700	1.73	6.00	26.1	0.00	73.8	73.8	1.28	0.06
	750	5.14	15.0	17.6	25.2	57.2	82.4	4.24	0.19
	800	17.5	35.1	16.5	56.6	26.9	83.5	14.6	0.54

TABLE 2The Catalytic Performance of BaX_2 (X = F, Cl, Br)-Promoted Y₂O₃ Catalysts

Note. The loading of BaX_2 was 30 mol%. The reaction conditions were the same as those in Table 1.

reaction, the BaO/Y₂O₃ catalysts showed much larger a_0 values. It was ca 10.620 Å at 30, 40, and 50 mol% loadings. For the fresh BaCl₂/Y₂O₃ catalysts, the a_0 values increased gradually from 10.604 to ca 10.627 Å as the BaCl₂ loadings increased from 0 to 50 mol%. After OCM reaction, a_0 increased to ca 10.638 Å.

For the BaCl₂/Y₂O₃ catalyst, the Ba3 $d_{5/2}$ and Cl2*p* peaks were at ca 781.0 and 199.0 eV binding energies, respectively. The Y3*d* peak was at ca 158.0 eV. Based on the XPS peak areas and the atomic sensitivity factors of the elements, the elemental compositions on the surfaces of the fresh and used 30 mol% BaCl₂/Y₂O₃ catalyst were calculated (Table 3). There was a distinct decrease in Ba/Y ratio after 12 h of the OCM reaction. There was no significant change in surface chlorine composition during the OCM reaction. Similar results (not shown) were obtained over the 10 and 50 mol% BaCl₂/Y₂O₃ catalysts.

Performance of 30 mol% BaCl₂/Y₂O₃ as Related to Reaction Time, Contact Time and CH₄/O₂ Ratio

The 30 mol% $BaCl_2/Y_2O_3$ (0.5 g) was found to be rather stable within a reaction time of 40 h (Fig. 5). At 750°C, with

TABLE 3

Surface Elemental Composition of the 30 mol% $BaCl_2/Y_2O_3$ Catalyst before and after OCM Reaction of 12 h, Based on the XPS Data

	Ba (%)	Cl (%)	Y (%)	O (%)	C (%)	Ba/Y
Before	6.0	11.5	24.7	47.6	10.7	0.24
12 h	1.6	11.5	26.2	39.0	21.8	0.06

 $CH_4: O_2: N_2 = 2.47: 1: 11.4$ and contact time = 0.6 g s ml⁻¹, the CH_4 conversion, C_2 selectivity, and C_2 yield stayed around 41, 51, and 21%, respectively. The C_2H_4/C_2H_6 ratio remained at 2.6 within the 40 h of testing time. However, the catalyst was losing chlorine during the reaction. At 4, 8, 12, 16, and 20 h, the losses of chlorine were around 3.5, 8.3, 13.5, 13.6, and 15.5% of the original amount. Apparently, the loss of ca 15.5% of chlorine from the 30 mol% BaCl₂/Y₂O₃ catalyst has little effect on the performance of the catalyst.

At 750°C and with a contact time of 0.36 g s ml⁻¹, the variation of the CH₄/O₂ ratio from 1 to 5 would cause the CH₄ conversion and the C₂H₄/C₂H₆ ratio to drop from ca 75 to 29% and from ca 4.5 to 1.4, respectively (Fig. 6a). The C₂ selectivity increased from ca 10.6 to 60.0%. The C₂ yield was ca 12% at CH₄/O₂ = 1 and reached 19.5% at CH₄/O₂ = 2, and then slightly decreased to reach ca 18% at CH₄/O₂ = 5.

Figure 6b shows that at 750°C and with $CH_4/O_2 = 2.47$, as the contact time increased from 0.06 to 0.86 g s ml⁻¹, CH_4 conversion and C_2H_4/C_2H_6 ratio increased from ca 13 to 41% and from 0.7 to 2.7, respectively. The C_2 selectivity, however, decreased from ca 57 to 40%. When the contact time was at or above 0.12 g s ml⁻¹, the C_2 yield stayed around 19%. The effect of changing the contact time between 0.2 and 0.7 g s ml⁻¹ on the C_2 yield was not significant.

O₂ and CO₂ TPD Studies of BaO/Y₂O₃ and BaCl₂/Y₂O₃

Figure 7 shows the O_2 TPD spectra of the fresh 0– 50 mol% BaO/Y₂O₃ catalysts. For comparison, the O_2 TPD

FIG. 1. Comparison of the catalytic performance of the Y_2O_3 (\blacklozenge), 30 mol% BaO/ Y_2O_3 (\blacklozenge), 30 mol% BaF₂/ Y_2O_3 (\blacksquare), 30 mol% BaCl₂/ Y_2O_3 (\blacktriangle), and 30 mol% BaBr₂/ Y_2O_3 (\blacklozenge) catalysts: (a) CH₄ conversion; (b) C₂ selectivity; and (c) C₂ yield. Reaction conditions were the same as those in Table 1.

FIG. 2. The catalytic performance of 30 mol% BaO/Y₂O₃ (hollow symbols) and 30 mol% BaCl₂/Y₂O₃ (solid symbols) catalysts at (a) 750 and (b) 800°C as related to BaO and BaCl₂ loadings: (\triangle) CH₄ conversion; (\diamond) C₂ selectivity; and (\square) C₂ yield.

FIG. 3. The specific surface areas of BaCl₂/Y₂O₃ (\triangle) catalysts before (hollow symbols) and after (solid symbols) OCM reactions at 800°C as related to BaCl₂ loading. Also shown for comparison are the specific surface areas of the 30 mol% BaO/Y₂O₃ (\bigcirc) catalyst.

spectrum of a 30 mol% BaO/Y₂O₃ catalyst used in OCM reaction was also presented (Fig. 7d'). With no BaO, Y₂O₃ gave an O₂ TPD peak at 400°C. The amount of O₂ desorbed was ca 0.07×10^{-5} mol g⁻¹. With the additions of 10 and 20 mol% BaO, this peak increased in intensity and at 30 mol% BaO loading, a shoulder was clearly developed at 480°C. The O₂ TPD profile of a 30 mol% BaO/Y₂O₃ catalyst used in OCM reaction is very similar to that of a fresh 30 mol% BaO/Y₂O₃ catalyst. The total O₂ desorbed was ca 3.7×10^{-5} mol g⁻¹. At 40 and 50 mol% BaO loadings, the O₂ TPD spectrum showed a broad peak centred at ca 480°C. The intensities of the O₂ TPD peaks increased further with the increase in BaO loading.

For the fresh 0–70 mol% BaCl₂/Y₂O₃ catalysts, the O₂ TPD peaks shifted gradually from 400 to ca 480°C. The intensities of the peaks decreased as the loading of BaCl₂ increased (Fig. 8). The amount of O₂ desorbed from a fresh 30 mol% BaCl₂/Y₂O₃ catalyst was ca 0.04×10^{-5} mol g⁻¹. For a 30 mol% BaCl₂/Y₂O₃ catalyst used in OCM reaction for 4 h, another peak at ca 350°C developed besides the 450°C peak (Fig. 9). After 8 or 12 h of OCM reaction, the O₂ TPD profile showed two components at ca 367 and 461°C. Such O₂ TPD profile appeared to be quite similar to that obtained over a 30 mol% BaO/Y₂O₃ catalyst used in OCM reaction (Fig. 7d'). The amount of O₂ desorbed was

around 0.11×10^{-5} mol g $^{-1}$. The results imply that in the course of the OCM reaction, a 30 mol% BaCl_2/Y_2O_3 catalyst was changing in nature and was developing a character that resembled a 30 mol% BaO/Y_2O_3 catalyst.

Such notion is supported by the CO₂ TPD results obtained over the 30 mol% BaO/Y2O3 and 30 mol% $BaCl_2/Y_2O_3$ catalysts. For the CO₂ TPD profile obtained over a fresh Y₂O₃ catalyst, there were peaks at ca 100, 140, and 335°C and shoulders at 175 and 500°C (Fig. 10). Clearly, there were basic sites of various strength existed on the surface. For a fresh 30 mol% BaO/Y2O3 catalyst, only weak peaks were observed at 90 and 140°C; implying the catalyst was low in surface basicity. CO2 desorption was observed above 650°C, possibly due to the decomposition of surface carbonate species. For a fresh 30 mol% BaCl₂/Y₂O₃ catalyst, peaks were observed at 100 and 140°C and a large broad band at 500°C. However, after OCM reaction, the 30 mol% BaCl₂/Y₂O₃ catalyst exhibited a profile very similar to that of a fresh 30 mol% BaO/Y2O3 catalyst: there were small CO₂ desorption peaks at ca 100 and 188°C and large desorption above 600°C. In other words, during OCM reaction, the 30 mol% BaCl₂/Y₂O₃ catalyst was changing into somewhat like a 30 mol% BaO/Y2O3 catalyst, with the lowering in surface basicity being observed.

¹⁸O/¹⁶O Isotope Exchange over Y₂O₃, 30 mol% BaO/Y₂O₃, and 30 mol% BaCl₂/Y₂O₃

Figure 11b reveals that the exchange of ¹⁸O and ¹⁶O was most efficient over the 30 mol% BaO/Y_2O_3 catalyst. Single exchange product ¹⁸O¹⁶O came to a maximum

FIG. 4. The change of the lattice parameter, a_0 , of Y_2O_3 in BaO/ Y_2O_3 (\bigcirc) and BaCl₂/ Y_2O_3 (\triangle) catalysts before (hollow symbols) and after (solid symbol) OCM reaction at 800°C as related to BaO and BaCl₂ loadings.

FIG. 5. Life study of the 30 mol% BaCl₂/Y₂O₃ catalyst at 750°C: (\blacklozenge) CH₄ conversion; (\blacksquare) C₂ selectivity; (\triangle) C₂ yield; and (\times) C₂H₄/C₂H₆ ratio.

at 383°C and complete ${}^{16}O_2$ production was observed at 504°C. Over Y_2O_3 , the respective temperatures were at 640 and 778°C (Fig. 11a). Over the 30 mol% BaCl₂/Y₂O₃ catalyst, they were at 600 and 745°C (Fig. 11c). Based on these ${}^{18}O/{}^{16}O$ isotope exchange results, one can conclude that the rates of ${}^{18}O/{}^{16}O$ exchange over the three catalysts decreased in the order of 30 mol% BaO/Y₂O₃ \gg 30 mol% BaCl₂/Y₂O₃ > Y₂O₃.

Reduction Studies of Y_2O_3 , 30 mol% BaO/ Y_2O_3 , and 30 mol% BaCl₂/ Y_2O_3

Temperature programmed reduction results of the three catalysts are shown in Fig. 12. For the Y_2O_3 catalyst within the range of 100 to 800°C, reduction was not significant. For the 30 mol% BaO/ Y_2O_3 catalyst, reduction occurred at ca 400°C and there was a band at 480°C and above 600°C, reduction was very significant. As for a 30 mol% BaCl₂/ Y_2O_3 catalyst, reduction occurred at ca 500°C and a band centred at ca 610°C existed. It is clear that reduction was continuing above 750°C. After OCM reaction of 8 h, the TPR profile of a 30 mol% BaCl₂/ Y_2O_3 catalyst showed a broad band stretching from 480 to well above 800°C.

In order to estimate the amount of reducible oxygen existed in the three catalysts, the catalysts were first reduced in H₂ at a desired temperature and then pulses of O₂ were passed through the catalysts at 800°C. From the amount of O₂ absorbed over each catalyst, one can measure indirectly the amount of oxygen removed in H₂-reduction. The idea

was based on the assumption that the vacancies generated in H₂-reduction will be eventually occupied by oxygen ions during O₂ pulsing. Table 4 shows the amount of absorbed O₂ at 800°C before the occurrence of zero diminution in O₂ pulse size over the three catalysts. It is clear that the amount of reducible oxygen in the 30 mol% BaO/Y₂O₃ catalyst was much higher than those in the other two catalysts. Compared to a fresh catalyst, the used 30 mol% BaCl₂/Y₂O₃ catalyst contained more reducible oxygen. The threshold temperatures for reduction to occur over the 30 mol% BaO/Y₂O₃, 30 mol% BaCl₂/Y₂O₃, and Y₂O₃ catalysts were respectively ca 400, 600, and 700°C.

TABLE 4

The Amount of Oxygen Absorbed at $800^{\circ}C$ over the Y_2O_3 , 30 mol% BaO/ Y_2O_3 and 30 mol% BaCl₂/ Y_2O_3 Catalysts H₂-Reduced at Various Temperatures

Tempe- rature (°C)	Y_2O_3 (10 ⁻⁶ mol g ⁻¹)	$\begin{array}{c} 30 \ mol\% \\ BaO/Y_2O_3 \\ (10^{-6} \ mol \ g^{-1}) \end{array}$	$\begin{array}{c} 30 \ mol\% \\ BaCl_2/Y_2O_3 \\ (10^{-6} \ mol \ g^{-1}) \end{array}$	$\begin{array}{c} 30 \text{ mol\%} \\ \text{BaCl}_2/\text{Y}_2\text{O}_3{}^a \\ (10^{-6} \text{ mol g}^{-1}) \end{array}$
300	0.0	0.0	0.0	0.0
400	0.0	0.94	0.0	0.17
500	0.0	3.56	0.0	0.39
600	0.0	4.38	0.16	0.62
700	0.41	6.53	0.73	0.79
750	0.65	6.57	1.30	1.39
800	1.69	7.71	1.76	2.59

^a After OCM reaction of 8 h.

FIG. 6. The catalytic performance of a 30 mol% BaCl₂/Y₂O₃ catalyst (0.3 g) at 750°C as related to (a) CH₄/O₂ ratio (contact time fixed at 0.36 g s ml⁻¹) and (b) contact time (CH₄: O₂ : N₂ fixed at 2.47 : 1 : 11.4): (\triangle) CH₄ conversion; (\diamond) C₂ selectivity; (\square) C₂ yield; and (\bigcirc) C₂H₄/C₂H₆ ratio.

FIG. 7. O_2 TPD spectra of (a) Y_2O_3 , (b) 10 mol% BaO/ Y_2O_3 , (c) 20 mol% BaO/ Y_2O_3 , (d) 30 mol% BaO/ Y_2O_3 , (e) 40 mol% BaO/ Y_2O_3 , and (f) 50 mol% BaO/ Y_2O_3 catalysts before OCM reaction. Also shown (d') for comparison is the O_2 TPD spectrum of a 30 mol% BaO/ Y_2O_3 catalyst after 8 h in OCM reaction at 800°C.

FIG. 8. O₂ TPD spectra of (a) Y_2O_3 , (b) 10 mol% BaCl₂/ Y_2O_3 , (c) 20 mol% BaCl₂/ Y_2O_3 , (d) 30 mol% BaCl₂/ Y_2O_3 , (e) 40 mol% BaCl₂/ Y_2O_3 , (f) 50 mol% BaCl₂/ Y_2O_3 , and (g) 70 mol% BaCl₂/ Y_2O_3 catalysts before OCM reaction.

FIG. 9. O_2 TPD spectra of a 30 mol% BaCl₂/Y₂O₃ catalyst used in OCM reaction at 800°C for (a) 0 h, (b) 4 h, (c) 8 h, and (d) 12 h.

DISCUSSION

For the Y_2O_3 catalyst at 800°C, CH₄ conversion, C₂ selectivity, and C₂ yield were 31.8, 26.9, and 8.6%, respectively. Based on the data in Table 1, it is clear that BaO, SrO, and CaO can promote Y_2O_3 better than MgO for the OCM reaction. As for the halides of barium, both 30 mol% of BaCl₂ and BaF₂ can promote Y_2O_3 better than 30 mol% of BaO (Table 2). In this paper, we shall concentrate on the effects of BaCl₂ on Y_2O_3 . The effects of BaF₂ on Y_2O_3 will be reported elsewhere. Over a 30 mol% BaCl₂/ Y_2O_3 catalyst, CH₄ conversion, C₂ selectivity, and C₂ yield of

FIG. 10. CO₂ TPD spectra of (a) Y_2O_3 , (b) 30 mol% BaO/ Y_2O_3 , and (c) 30 mol% BaCl₂/ Y_2O_3 . Also shown (c') is the CO₂ TPD spectra of a 30 mol% BaCl₂/ Y_2O_3 catalyst after 8 h in OCM reaction at 800°C.

BaO- AND BaCl₂-PROMOTED Y₂O₃ CATALYSTS

FIG. 11. ${}^{18}\text{O}{}^{16}\text{O}$ isotope exchange over (a) Y₂O₃, (b) 30 mol% BaO/ Y₂O₃, (c) 30 mol% BaCl₂/Y₂O₃ catalysts: (\blacklozenge) ${}^{16}\text{O}_2$, (\blacktriangle) ${}^{18}\text{O}_2$, and (\blacksquare) ${}^{18}\text{O}{}^{16}\text{O}$.

43.2, 51.7, and 22.3% could be achieved at 800°C. Over a 30 mol% BaO/Y₂O₃ catalyst, they were 39.1, 31.3, and 12.2%. It seems that BaO can improve both CH₄ conversion and C₂ selectivity while BaCl₂ can further improve the C₂ selectivity when the reaction temperatures were above 700°C (Figs. 1 and 2). With the addition of $BaCl_2$ to Y_2O_3 , the specific surface areas of the fresh BaCl₂/Y₂O₃ catalysts reduced. For a fresh 30 mol% BaCl₂/Y₂O₃ catalyst, only cubic Y₂O₃ crystal phase was detected by XRD. After the OCM reaction, Ba₃Cl₄CO₃ and BaCO₃ were detected. For a fresh 30 mol% BaO/Y₂O₃ catalyst, we detected the BaCO₃ crystal phase. Based on the detection of barium compounds and the reduction in specific surface areas of the catalysts when BaCl₂ and BaO were added to Y₂O₃, we can be sure that sintering of surface barium compounds had occurred on Y₂O₃, especially during OCM reactions. Although chlorine content analysis showed that there was a chlorine loss of up to 13.5% of the original amount after 12 h of reaction, the amount of Cl on the surface, as revealed by XPS studies, was rather constant. This could be the reason why the performance of the catalyst at this point of reaction time was not affected by the loss in chlorine content. The reduction in Ba/Y ratio could be a result of surface sintering of barium compound(s). With the formation of particles, the "surface" of barium compound(s) reduced and so was the Ba3d_{5/2} XPS signal.

Detailed XRD investigations of the BaO/Y₂O₃ and BaCl₂/Y₂O₃ catalysts revealed that the addition of BaO or BaCl₂ to Y₂O₃ could result in the enlargement of the Y₂O₃ lattice. Such change in lattice structure of Y₂O₃ could be a result of ionic substitutions. Ba²⁺ ions (radius, 1.43 Å (41)) are larger than Y³⁺ ions (radius, 0.88 Å (41)) and

FIG. 12. TPR spectra of (a) Y_2O_3 , (b) 30 mol% BaO/ Y_2O_3 , (c) 30 mol% BaCl₂/ Y_2O_3 catalysts, and (d) a 30 mol% BaCl₂/ Y_2O_3 catalyst after OCM reaction at 800°C for 8 h.

carry smaller charge. If certain amount of Y³⁺ ions were replaced by Ba²⁺ ions, being bigger in size and inducing smaller coulombic force, the Ba^{2+} ions occupying lattice points of the Y₂O₃ phase will cause the Y₂O₃ lattice to expand. We found that BaCl₂ addition could enlarge the Y₂O₃ lattice even further, especially during the OCM reactions. Hence the reduction in surface Ba/Y ratio detected after the OCM reactions could be partly due to the diffusion of Ba^{2+} ions into the bulk of Y_2O_3 . Along with the infiltration of the Ba²⁺ ions, certain amount of O²⁻ ions (radius, 1.40 Å (41)) inside the Y_2O_3 lattice could be replaced by the incoming Cl⁻ ions (radius, 1.81 Å (41)). If this happened, an electron would be trapped next to the Cl⁻ ion to maintain electric neutrality, and the Y₂O₃ lattice would enlarge even more. It is clear that such actions of ionic substitution were occurring during the OCM reactions because the Y₂O₃ lattices of the 30 mol% BaO/Y₂O₃ and 30 mol% BaCl₂/Y₂O₃ catalysts were found to enlarge further after the OCM reactions (Fig. 4). Lattice distortions of Y_2O_3 have been detected by Osada et al. in the Y₂O₃-CaO catalysts (26). The increase in C₂₊ selectivity at 600 and 700°C with the addition of Y₂O₃ (below 50 mol%) to CaO was attributed to the formation of a solid solution of Y₂O₃-CaO and to the presence of interstitial oxygen ions O_2^- . In our previous studies, we found that ionic substitutions of similar nature inside the 20 mol% SrF₂/SmOF catalyst would induce the formation of trapped electrons (42). In our studies of a 5 mol% Y₂O₃/BaF₂ catalyst, we detected EPR signals of trapped electrons and O_2^- ions (43). Hence, the addition of BaO and BaCl₂ to Y₂O₃ can alter the surface as well as the bulk natures of Y₂O₃. On the surface, barium compounds accumulated and in the bulk, replacements of Y^{3+} by Ba²⁺ ions and O^{2-} by Cl^{-} ions occurred. As both pure BaO and BaCl₂ performed rather poorly below 800°C in OCM reactions (Tables 1 and 2), the accumulation of BaO or BaCl₂ on Y₂O₃ cannot explain the enhanced performance over the promoted catalysts. In other words, Y₂O₃ was not acting solely as support. We advocate the proposal of Kaminsky et al. in their Ba/Y2O3 studies (27) and conclude that the superiority in catalytic performance of the BaO- and BaCl₂promoted Y₂O₃ catalyst is due to ionic substitutions occurred inside the lattice of Y₂O₃.

It has been pointed out that the reduction in specific surface area of the 0–90 mol% BaCO₃/LaOCl catalysts could improve C₂ selectivity but not necessarily reduce CH₄ conversion (37). It is because according to the following chemical equations, for a limited amount of oxygen, as more CH₄ were converted to C₂ compounds due to the suppression in CH₄ deep oxidation, CH₄ conversion was in fact enhanced:

Complete oxidation,	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
C ₂ generation,	$2CH_4+O_2 \rightarrow C_2H_4+2H_2O$
	$2CH_4 + \frac{1}{2}O_2 \rightarrow C_2H_6 + H_2O_1$

The net result was that, although there was reduction in specific surface areas, the conversion of methane changed little. From Fig. 2, between 0 and 40 mol% BaCl₂ loadings, the addition of BaCl₂ has greatly improved the C₂ selectivity and even though there was reduction in specific surface area, the CH₄ conversion over the BaCl₂/Y₂O₃ catalysts improved. Above 40 mol% BaCl₂ loading and at 750°C, both CH₄ conversion and C₂ selectivity dropped. We believe it is a result of surface accumulation of Ba₃Cl₄CO₃ crystals which might not be active in the OCM reaction. As for the BaO/Y_2O_3 catalysts, there were steady improvements in CH₄ conversion and C₂ selectivity as the loading of BaO increased from 0 to 50 mol%. At 750 and 800°C, the 40 and 50 mol% BaO/Y₂O₃ catalysts were inferior to the corresponding BaCl₂/Y₂O₃ in C₂ selectivity but definitely superior in CH₄ conversion. The net effect is that at 50 mol% loading, the BaO/ Y_2O_3 catalyst has higher C_2 yield than the BaCl₂/Y₂O₃ catalyst.

Based on the O_2 TPD results in Fig. 7, we know that considerable amounts of O_2 can desorb from the Y_2O_3 and 10 to 50 mol% BaO/ Y_2O_3 catalysts. Compared to these amounts, the O_2 desorbed from the 10 to 70 mol% BaCl₂/ Y_2O_3 catalysts were very small. It is clear that the presence of Cl⁻ ions has depleted the amount of oxygen species present in the BaCl₂/ Y_2O_3 catalysts. After prolongedly used in OCM reactions, the 30 mol% BaCl₂/ Y_2O_3 catalyst changed to somewhat like a 30 mol% BaO/ Y_2O_3 catalyst (Figs. 9 and 10). Such changes in the nature of the 30 mol% BaCl₂/ Y_2O_3 catalyst apparently had no drastic effect on the performance of the catalyst (Fig. 5).

Osada et al. (26) have reported the formation of Y₂O₃-CaO solid solution in their studies of binary oxides Y_2O_3 -CaO as OCM catalysts. They concluded that the formation of the solid solution would result in a lowering of surface basicity, thereby increasing the activity and selectivity at temperatures below 700°C. In our studies, we found that the 30 mol% BaO/Y₂O₃ catalyst performed well at 650°C (Fig. 2), possibly due to similar reasons. From Fig. 10, we know that the BaO/Y₂O₃ catalyst has low surface basicity. Based on the ${}^{18}O/{}^{16}O$ isotope exchange data over the fresh Y_2O_3 , 30 mol% BaO/ Y_2O_3 , and 30 mol% BaCl₂/ Y_2O_3 catalysts, 30 mol% BaO/Y₂O₃ appeared to be more likely to get involved in oxidation reaction than the others. This notion is supported by the reduction studies of the three catalysts. Not only the 30 mol% BaO/Y₂O₃ catalyst can be reduced at lower temperatures, it also contain more reducible oxygen than the two other catalysts (Table 4). In other words, the 30 mol% BaO/Y₂O₃ catalyst is more ready to enhance CH₄ conversion and CH₄ deep oxidation than the two catalysts. That is why there was considerable decrease in C₂ selectivity above 750°C over the BaO-promoted catalyst. The 30 mol% BaCl₂/Y₂O₃ catalyst is superior to the 30 mol% BaO/Y2O3 catalyst in that it can suppress CH4 deep oxidation and enhance C2 selectivity. Such an effect became most apparent at temperatures above 700°C. From 650 to 800°C, there were gradual increases in CH₄ conversion (from 19.8 to 43.2%) and C₂ selectivity (from 32.1 to 51.7%). As suggested by Kaminsky *et al.* (27), the substitution of Ba²⁺ into Y^{3+} lattice sites in the Ba-doped Y_2O_3 catalyst was temperature dependent and could create more active sites at higher temperatures. We interpret that, although more active sites were created for CH₄ activation, there was the presence of chloride ions to inhibit deep oxidation reactions. Since CH₄ deep oxidation was smothered and the CH₄ activated was channeled to C₂ formation, there were increases in both CH₄ conversion and C₂ selectivity.

CONCLUSION

Based on the catalytic performance of the MX_2/Y_2O_3 (M = Mg, Ca, Sr, Ba, and X = F, Cl, Br) catalysts, we have developed the 30 mol% BaCl₂/Y₂O₃ catalyst for the OCM reaction. Both BaO and BaCl₂ can promote the catalytic performance of Y₂O₃ in the OCM reaction. BaO can improve the conversion of CH_4 as well as the selectivity to C_2 products. The use of BaCl₂ can improve the C₂ selectivity value even further. It has been found that with the addition of BaO and BaCl₂ to Y_2O_3 , the surface and bulk natures of Y₂O₃ changed significantly. Barium compounds were accumulated on the surface and ionic substitution occurred inside the Y_2O_3 lattice. We have proven that there was loss (up to ca 15.5% of the original amount) in chlorine from the 30 mol% BaCl₂/Y₂O₃ catalyst during 20 h of OCM reaction at 750°C but the performance of the catalyst was stable within the test period of 40 h. Based on the O₂ and CO₂ TPD studies, we know that the 30 mol% BaCl₂/Y₂O₃ catalyst was changing to somewhat like a 30 mol% BaO/Y₂O₃ catalyst. From the reduction studies of the catalysts, we found that the 30 mol% BaO/Y₂O₃ catalyst has the highest amount of reducible oxygen. The 30 mol% BaCl₂/Y₂O₃ catalyst was able to provide a relatively smaller amount of reducible oxygen than the 30 mol% BaO/ Y_2O_3 one. Hence, the C_2 selectivity obtained over the 30 mol% BaCl₂-promoted catalyst was high.

ACKNOWLEDGMENTS

The project was supported by the Hong Kong Baptist University (HKBU) and the Hong Kong Research Grants Council, UGC (HKBU 146/95P). We thank Mr. M. S. Tse for performing the chlorine analysis. Y.W.L. thanks the HKBU for a Ph.D. studentship.

REFERENCES

- 1. Aika, K., Moriyama, T., Takasaki, N., and Iwamatsu, E., J. Chem. Soc., Chem. Commun., 1210 (1986).
- Yingli, B., Kaiji, Z., Yutao, J., Chiwen, T., and Xiangguang, Y., *Appl. Catal.* 39, 185 (1988).
- 3. Carreiro, J. A. S. P., and Baerns, M., J. Catal. 117, 258 (1989).
- Suzuki, T., Wada, T. S., and Watanabe, Y., Appl. Catal. 59, 213 (1990).

- Korf, S. J., Roos, J. A., Derksen, J. W. H. C., Vreeman, J. A., van Ommen, J. G., and Ross, J. R. H., *Appl. Catal.* 59, 291 (1990).
- 6. Zhang, Z. L., Au, C. T., and Tsai, K. R., Appl. Catal. 62, L29 (1990).
- 7. Maitra, A. M., Campbell, I., and Tyler, R. J., *Appl. Catal. A: General* **85**, 27 (1992).
- Carreiro, J. A. S. P., Follmer, G., Lehmann, L., and Baerns, M., *in* "Proceedings, 9th International Congress on Catalysis, Calgary 1988" (M. J. Philips and M. Ternan, Eds.), p. 891. Chem. Institute of Canada, Ottawa, 1988.
- Buyevskaya, O. V., Suleimanov, A. L., Aliev, S. M., and Sokolovskii, V. D., *React. Kinet. Catal. Lett.* 33, 223 (1987).
- Sokolovskii, V. D., Buyevskaya, O. V., Aliev, S. M., and Davydov, A. A., *Stud. Surf. Sci. Catal.* 55, 437 (1990).
- (a) Otsuka, K., Yokoyama, S., and Morikawa, A., *Chem. Lett.*, 319 (1985).
 (b) Otsuka, K., Liu, Q., and Morikawa, A., *J. Chem. Soc., Chem. Commun.*, 586 (1986).
 (c) Otsuka, K., Jinno, K., and Morikawa, A., *J. Catal.* 100, 353 (1986).
 (d) Otsuka, K., and Nakajima, T., *J. Chem. Soc. Faraday Trans.* 1 83, 1315 (1987).
 (e) Otsuka, K., and Komatsu, T., *Chem. Lett.*, 483 (1987).
- (a) Lin, C-H., Campbell, K. D., Wang, J.-X., and Lunsford, J. H., J. Phys. Chem. **90**, 534 (1986). (b) Campbell, K. D., Zhang, H., and Lunsford, J. H., J. Phys. Chem. **92**, 750 (1988). (c) Tong, Y., Rosynek, M. P., and Lunsford, J. H., J. Phys. Chem. **93**, 2896 (1989). (d) Tong, Y., Rosynek, M. P., and Lunsford, J. H., J. Catal. **126**, 291 (1990). (e) Xu, M., and Lunsford, J. H., Catal. Lett. **11**, 295 (1991).
- (a) Ekstrom, A., and Lapszewicz, J. A., J. Chem. Soc., Chem. Commun., 797 (1988). (b) Ekstrom, A., and Lapszewicz, J. A., J. Am. Chem. Soc. 110, 5226 (1988).
- (a) Lacombe, S., Geantet, C., and Mirodatos, C., *J. Catal.* **151**, 439 (1994).
 (b) Lacombe, S., Zanthoff, H., and Mirodatos, C., *J. Catal.* **155**, 106 (1995).
- Choudhary, V. R., Chaudhari, S. T., Rajput, A. M., and Rane, V. H., J. Chem. Soc., Chem. Commun., 555 (1989).
- Le Van, T., Che, M., Kermarec, M., Louis, C., and Tatibouet, J. M., Catal. Lett. 6, 395 (1990).
- 17. Dubois, J. L., and Cameron, C. J., Chem. Lett., 1089 (1991).
- Deboy, J. M., and Hicks, R. F., *Ind. Eng. Chem. Res.* 27, 1577 (1988).
- 19. Deboy, J. M., and Hicks, R. F., J. Catal 113, 517 (1988).
- 20. Iwamoto, M., Taga, T., and Kagawa, S., Chem. Lett., 1469 (1982).
- Deboy, J. M., and Hicks, R. F., J. Chem. Soc., Chem. Commun., 982 (1988).
- 22. Yamashita, H., Machida, Y., and Tomita, A., *Appl. Catal.* **79**, 203 (1991).
- Machida, K., and Enyo, M., J. Chem. Soc., Chem. Commun., 1639 (1987).
- Otsuka, K., Komatsu, T., and Shimizu, Y., Successful design of catalysts, *in* "Studies in Surface Science and Catalysis" (T. Inui, Ed.), Vol. 44, p. 43, Elsevier, Amsterdam, 1988.
- Mimoun, H., Robine, A., Bonnaudet, S., and Cameron, C. J., *Appl. Catal.* 58, 269 (1990).
- Osada, Y., Koike, S., Fukushima, T., Ogasawara, S., Shikada, T., and Ikariya, T., Appl. Catal. 59, 59 (1990).
- Kaminsky, M. P., Zajac, G. W., Campuzano, J. C., Faiz, M., Beaulaige, L., Gofron, K., Jenning, G., Yao, J. M., and Saldin, D. K., *J. Catal.* 136, 16 (1992).
- Erarslanoglu, Y., Onal, I., Dogu, T., and Senkan, S., *Appl. Catal. A* 145, 75 (1996).
- Fujimoto, K., Hashimoto, S., Asami, K., Omata, K., and Tominaga, H., *Appl. Catal.* **50**, 223 (1989)
- 30. Burch, R., Squire, G. D., and Tsang, S. C., *Appl. Catal.* **46**, 69 (1989).
- Burch, R., Chalker, R. S., and Loader, P., New frontiers in catalysis, in "Studies in Surface Science and Catalysis" (L. Guczi *et al.*, Eds.), Vol. 75, p. 1079. Elsevier, Amsterdam, 1992.

- 32. Sugiyama, S., Matsumura, Y., and Moffat, J. B., J. Catal. 139, 338 (1993).
- 33. Voyatzis, R., and Moffat, J. B., *J. Catal.* 142, 45 (1993).
- 34. Au, C. T., Zhang, Y. Q., and Ng, C. F., Catal. Lett. 23, 377 (1994).
- 35. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., J. Catal. 159, 280 (1996).
- 36. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., J. Catal. 163, 399 (1996).
- 37. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., Appl. Catal., accepted.
- 38. Au, C. T., He, H., Lai, S. Y., and Ng, C. F., J. Catal. 167, 354 (1997).
- Vogel, A. I., "Vogel's Textbook of Quantitative Inorganic Analysis," 5th ed., Longman, Harlow/New York, 1991.
- Wells, A. F., "Structural Inorganic Chemistry," 5th ed., Oxford Univ. Press, Oxford, 1984.
- Cotton, F. A., and Wilkinson, G., "Advanced Inorganic Chemistry," 3rd ed., Interscience, New York, 1972.
- Au, C. T., and Zhou, X. P., J. Chem. Soc., Faraday Trans. 92, 1793 (1996).
- Au, C. T., Zhou, X. P., Liu, Y. W., and Ng, C. F., extended abstract submitted to the Asia-Pacific Congress on Catalysis, Nov. 1997, Kyongju, Korea.